Opportunities offered by chiral η⁶-arene/N-arylsulfonyl-diamine-RuII catalysts in the asymmetric transfer hydrogenation of ketones and imines.

نویسندگان

  • Jiří Václavík
  • Petr Kačer
  • Marek Kuzma
  • Libor Cervený
چکیده

Methods for the asymmetric transfer hydrogenation (ATH) of ketones and imines are still being intensively studied and developed. Of foremost interest is the use of Noyori's [RuCl(η⁶-arene)(N-TsDPEN)] complexes in the presence of a hydrogen donor (i-PrOH, formic acid). These complexes have found numerous practical applications and have been extensively modified. The resulting derivatives have been heterogenized, used in ATH in water or ionic liquids and even some attempts have been made to approach the properties of biocatalysts. Therefore, an appropriate modification of the catalyst that suits the specific requirements for the reaction conditions is very often readily available. The mechanism of the reaction has also been explored to a great extent. Model substrates, acetophenone (a ketone) and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (an imine), are both reduced by this Ru catalytic system with almost perfect selectivity. However, in each case the major product is a different enantiomer (S- for an alcohol, R- for an amine when the S,S-catalyst is used), which demanded an in-depth mechanistic investigation. Full-scale molecular modelling of this system enabled us to visualize the plausible 3D structures of the transition states, allowing the proposition of a viable explanation of previous experimental findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines.

The asymmetric transfer hydrogenation (ATH) of imines catalyzed by the Noyori-Ikariya [RuCl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN=1,2-diphenylethylene-1,2-diamine) half-sandwich complexes is a research topic that is still being intensively developed. This article focuses on selected aspects of this catalytic system. First, a great deal of attention is devoted to the N-arylsulfonyl moiety of the...

متن کامل

Computational evaluation of the η6-arene during the ATH of imines on Noyori’s RuII catalyst

Asymmetric hydrogenation ranks to the most intensively researched way of preparation of enantiomerically pure compounds which are demanded e.g. in pharmaceutical industry, cosmetics or agriculture. In the field of asymmetric transfer hydrogenations (ATH) of C=N and C=O double bonds Noyori’s ruthenium (II) complexes represent significant breakthrough. This catalytic system consists of three inte...

متن کامل

The Development of Phosphine-Free "Tethered" Ruthenium(II) Catalysts for the Asymmetric Reduction of Ketones and Imines.

In this account, we describe the design, synthesis and applications of tethered versions of the Ru(II)/N-tosyl-1,2-diphenylethylene-1,2-diamine (TsDPEN) class of catalyst that are commonly used for asymmetric transfer hydrogenation and asymmetric hydrogenation of ketones and imines. The review covers key aspects of the reaction mechanisms and examples of applications, including industrial appli...

متن کامل

An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones.

The production of enantiopure chiral compounds is important for pharmaceutical and agrochemical industries because enantiomers can exhibit distinct biological activities. Therefore, processes that directly produce the desired enantiomer are desirable. First reported by Knowles, Horner et al. in 1968, catalytic asymmetric hydrogenation of unsaturated compounds such as olefins, ketones, and imine...

متن کامل

Asymmetric transfer hydrogenation of imines catalyzed by a polymer-immobilized chiral catalyst.

The asymmetric transfer hydrogenation of imines was performed with the use of a polymer-immobilized chiral catalyst. The chiral catalyst, prepared from crosslinked polystyrene-immobilized chiral 1,2-diamine monosulfonamide, was effective in the asymmetric transfer hydrogenation of N-benzyl imines in CH(2)Cl(2) to give a chiral amine in high yield and good enantioselectivity. Furthermore, an amp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2011